
Uncovering the capabilities of malicious software allows security professionals to respond to
incidents, fortify defenses, and derive threat intelligence. The malware analysis tips and tricks
outlined in this poster act as a starting point and a reminder for the individuals looking to
reverse-engineer and otherwise examine suspicious files such as compiled executables and
potentially malicious documents.

What threat does the malicious or suspicious artifact pose? What do its mechanics reveal
about the adversary’s goals and capabilities? How effective are the company’s security
controls against such infections? What security measures can strengthen the infrastructure
from future attacks of this nature? Malware analysis helps answer such questions critical to
an organization’s ability to handle malware threats and related incidents.

This poster brings together malware analysis resources related to:

 �The overall process to examining malicious software in a controlled lab environment

 �Using the REMnux® toolkit for analyzing malicious software using Linux-based tools

 �Taking a closer look at malicious software by reversing it at the code level

 �Analyzing malicious documents, including Microsoft Office and PDF files

To learn more about this topic, consider the following SANS courses:

 �FOR610: Reverse-Engineering Malware: Malware Analysis Tools and Techniques (sans.org/for610)

 �FOR710: Reverse-Engineering Malware: Advanced Code Analysis (sans.org/for710)

For additional learning resources, follow along the practical malware analysis videos from
SANS authors and instructors, available for free at for610.com/start-malware-analysis.

A typical malware analysis report covers the following areas:

 �Summary of the analysis: Key takeaways the reader should get from the report regarding the specimen’s
nature, origin, capabilities, and other relevant characteristics

 �Identification: The type of the file, its name, size, hashes (such as SHA256 and imphash), malware names
(if known), current anti-virus detection capabilities

 �Characteristics: The specimen’s capabilities for infecting files, self-preservation, spreading, leaking
data, interacting with the attacker, and so on; for a good reference of what characteristics you may
need, take a look at the MAEC Malware Capabilities project or the alternative effort Malware Behavior
Catalog (MBC)

 �Dependencies: Files and network resources related to the specimen’s functionality, such as supported
OS versions and required initialization files, custom DLLs, executables, URLs, and scripts

 �Behavioral and code analysis findings: Overview of the analyst’s behavioral, as well as static and
dynamic code analysis observations

 �Supporting figures: Logs, screenshots, string excerpts, function listings, and other exhibits that support
the investigators analysis

 �Incident recommendations: Indicators for detecting the specimen on other systems and networks
(a.k.a. indicators of compromise or IOCs), and possible for eradication steps

For downloadable malware analysis report templates, see for610.com/report-mindmap and
for610.com/report-template.

 �Required libraries

 �Configuration files

 �Scripts and executables

 �URLs

 �Behavioral analysis

 Static code analysis

 Dynamic code analysis

 Memory analysis

 �Logs

 Strings

 Function listings

 Screenshots

 Key observations

 �Rocommendations

 �Limitations

 Report date and authors

 �File name, type, and size

 File hashes

 Anti-malware identifies

 Infection capabilities

 Self-defensive measures

 Spreading mechanics

 Data leakage abilities

 �Remote attacker
interactions

Summary of
the Analysis

Sample’s
Characteristics

Dependencies

Supporting
Figures

Malware
Report

Template
Sample’s

IdentificationObservations

The process of analyzing malicious software involves several stages, which can be listed in the
order of increasing complexity. Though it’s convenient to group malware analysis tasks into

discrete stages, the tasks are often intertwined, with the insights gathered in one stage
informing efforts conducted in another. The pyramid diagram above, based in part on the

experiences of security professional Alissa Torres, presents one such ranking.

Manual Code Reversing
Reverse-engineering the code that comprises the specimen can add valuable insights to the
findings available after completing interactive behavior analysis. Some characteristics of the
specimen are simply impractical to examine without examining the code. Code-level analysis
often involves unpacking the specimen, deciding any data the malware author may have
concealed, understanding the capabilities that didn’t exhibit themselves during behavior analysis.

Interactive Behavior Analysis
Interactive behavior analysis involves examining how sample runs in the lab that’s
under the analyst’s full control to go beyond what a fully automated approach might
produce. This stage involves examining registry, filesystem, process, network, and
memory activities. It is especially fruitful when the researcher interacts with the
malicious program, rather than passively observing the specimen.

Static Properties Analysis
Analysts might proceed with examining the malware specimen by looking at its static
properties, which are sometimes called metadata. This process entails examining the
strings embedded into the file, its overall structure, and header data, without actually
running the malicious program. This stage helps the analyst decide what aspects of the
specimen, if any, are worth examining more closely.

Fully Automated Analysis
The easiest way to begin learning about a malware specimen is to examine it using fully
automated tools. Sometimes called analysis sandboxes, these they’re designed to
assess what the specimen might do if it ran on a system. They might not provide as
much insight as a human analyst would. However, they can handle vast amounts of
malware, allowing the analyst to focus on the specimens that truly require her attention.

Poster Created by Lenny Zeltser. © 2022 Lenny Zeltser. All Rights Reserved.

DFPS_FOR610_v1.1_09-22

Cheat Sheet for Analyzing Malicious Software
This cheat sheet presents tips for analyzing and reverse-engineering malware. It outlines the
steps for performing behavioral and code-level analysis of malicious software.

Overview of the Malware Analysis Process
1. Use automated analysis sandbox tools for an initial assessment of

the suspicious fi le.
2. Set up a controlled, isolated laboratory in which to examine the

malware specimen.
3. Examine static properties and meta-data of the specimen for

triage and early theories.
4. Emulate code execution to identify malicious capabilities and

contemplate next steps.
5. Perform behavioral analysis to examine the specimen’s

interactions with its environment.
6. Analyze relevant aspects of the code statically with a disassembler

and decompiler.
7. Perform dynamic code analysis to understand the more diffi cult

aspects of the code.
8. If necessary, unpack the specimen.
9. Repeat steps 4-8 above as necessary (the order may vary) until

analysis objectives are met.
10. Augment your analysis using other methods, such as memory

forensics and threat intel.
11. Document fi ndings, save analysis artifacts and clean up the

laboratory for future analysis.

Behavioral Analysis
Be ready to revert to good state via virtualization snapshots, Clonezilla,
dd, FOG, PXE booting, etc.
Monitor local interactions (Process Explorer, Process Monitor, ProcDOT,
Noriben).
Detect major local changes (RegShot, Autoruns).
Monitor network interactions (Wireshark, Fiddler).
Redirect network traffi c (fakedns, accept-all-ips).
Activate services (INetSim or actual services) requested by malware
and reinfect the system.
Adjust the runtime environment for the specimen as it requests
additional local or network resources.

Ghidra for Static Code Analysis
Go to specifi c destination g
Show references to instruction Ctrl+Shift+f
Insert a comment . ;
Follow jump or call . Enter
Return to previous location Alt+Left
Go to next location . Alt+Right
Undo . Ctrl+z
Defi ne data type . t
Add a bookmark . Ctrl+d
Text search . Ctrl+Shift+e
Add or edit a label . l
Disassemble values . d

x64dbg/x32dbg for Dynamic Code Analysis
Run the code . F9
Step into/over instruction F7/F8
Execute until selected instruction F4
Execute until the next return Ctrl+F9
Show previous/next executed instruction -/+
Return to previous view . *
Go to specifi c expression . Ctrl+g
Insert comment/label . ;/:
Show current function as a graph g
Find specifi c pattern . Ctrl+b
Set software breakpoint on specifi c instruction . . Select instruction » F2
Set software breakpoint on API Go to Command prompt
 » SetBPX API Name
Highlight all occurrences of the keyword h » Click on keyword
in disassembler
Assemble instruction in place of selected one . . Select instruction
 » Spacebar
Edit data in memory or instruction opcode . . . Select data or
 instruction » Ctrl+e
Extract API call references Right-click in

disassembler » Search
for » Current module »
Intermodular calls

Unpacking Malicious Code
Determine whether the specimen is packed by using Detect It Easy,
Exeinfo PE, Bytehist, peframe, etc.
To try unpacking the specimen quickly, infect the lab system and dump
from memory using Scylla.
For more precision, fi nd the Original Entry Point (OEP) in a debugger
and dump with OllyDumpEx.
To fi nd the OEP, anticipate the condition close to the end of the
unpacker and set the breakpoint.
Try setting a memory breakpoint on the stack in the unpacker’s
beginning to catch it during cleanup.
To get closer to the OEP, set breakpoints on APIs such as LoadLibrary,
VirtualAlloc, etc.
To intercept process injection set breakpoints on VirtualAllocEx,
WriteProcessMemory, etc.
If cannot dump cleanly, examine the packed specimen via dynamic
code analysis while it runs.
Rebuild imports and other aspects of the dumped fi le using Scylla,
Imports Fixer, and pe_unmapper.

Bypassing Other Analysis Defenses
Decode obfuscated strings statically using FLOSS, xorsearch,
Balbuzard, etc.
Decode data in a debugger by setting a breakpoint after the decoding
function and examining results.
Conceal x64dbg/x32dbg via the ScyllaHide plugin.
To disable anti-analysis functionality, locate and patch the defensive
code using a debugger.
Look out for tricky jumps via TLS, SEH, RET, CALL, etc. when stepping
through the code in a debugger.
If analyzing shellcode, use scdbg and runsc.
Disable ASLR via setdllcharacteristics, CFF Explorer.

Authored by Lenny Zeltser, who is the CISO at Axonius and Faculty Fellow
at SANS Institute. You can fi nd him at twitter.com/lennyzeltser and
zeltser.com. Download this and other Lenny’s security cheat sheets from
zeltser.com/cheat-sheets. Creative Commons v3 “Attribution” License for
this cheat sheet version 2.2.

REMnux Usage Tips for Malware Analysis on Linux
This cheat sheet outlines the tools and commands for analyzing malicious software on
REMnux Linux distro.

Getting Started with REMnux
1. Get REMnux as a virtual appliance, install the distro on a dedicated

system, or add it to an existing one.
2. Review REMnux documentation at docs.remnux.org.
3. Keep your system up to date by periodically running “remnux

upgrade” and “remnux update”.
4. Become familiar with REMnux malware analysis tools available as

Docker images.
5. Know default logon credentials: remnux/malware

General Commands on REMnux
Shut down the system shutdown
Reboot the system reboot
Switch to a root shell sudo -s
Renew DHCP lease renew-dhcp
See current IP address myip
Edit a text fi le code fi le
View an image fi le feh fi le
Start web server httpd start
Start SSH server sshd start

Analyze Windows Executables
Static Properties: manalyze, peframe, pefi le, exiftool, clamscan, pescan,
portex, bearcommander, pecheck
Strings and Deobfuscation: pestr, bbcrack, brxor.py, base64dump,
xorsearch, fl arestrings, fl oss, cyberchef
Code Emulation: binee, capa, vivbin
Disassemble/Decompile: ghidra, cutter, objdump, r2
Unpacking: bytehist, de4dot, upx

Reverse-Engineer Linux Binaries
Static Properties: trid, exiftool, pyew, readelf.py
Disassemble/Decompile: ghidra, cutter, objdump, r2
Debugging: edb, gdb
Behavior Analysis: ltrace, strace, frida, sysdig, unhide

Investigate Other Forms of Malicious Code
Android: apktool, droidlysis, androgui.py, baksmali, dex2jar
Java: cfr, procyon, jad, jd-gui, idx_parser.py
Python: pyinstxtractor.py, pycdc
JavaScript: js, js-fi le, objects.js, box-js
Shellcode: shellcode2exe.bat, scdbg, xorsearch
PowerShell: pwsh, base64dump
Flash: swfdump, fl are, fl asm, swf_mastah.py, xxxswf

Examine Suspicious Documents
Microsoft Offi ce Files: vmonkey, pcodedmp, olevba, xlmdeobfuscator,
oledump.py, msoffi ce-crypt, ssview
RTF Files: rtfobj, rtfdump
Email Messages: emldump, msgconvert
PDF Files: pdfi d, pdfparser, pdfextract, pdfdecrypt, peepdf, pdftk,
pdfresurrect, qpdf, pdfobjfl ow
General: base64dump, tesseract, exiftool

Explore Network Interactions
Monitoring: burpsuite, networkminer, polarproxy, mitmproxy,
wireshark, tshark, ngrep, tcpxtract
Connecting: thug, nc, tor, wget, curl, irc, ssh, unfurl
Services: fakedns, fakemail, accept-all-ips, nc, httpd, inetsim, fakenet,
sshd, myip

Gather and Analyze Data
Network: Automater.py, shodan, ipwhois_cli.py, pdnstool
Hashes: malwoverview.py, nsrllookup, Automater.py, vt,
virustotal-search.py
Files: yara, scalpel, bulk_extractor, ioc_writer
Other: dexray, viper, time-decode.py

Other Analysis Tasks
Memory Forensics: vol.py, vol3, linux_mem_diff.py, aeskeyfi nd,
rsakeyfi nd, bulk_extractor
File Editing: wxHexEditor, scite, code, xpdf, convert
File Extraction: 7z, unzip, unrar, cabextract

Use Docker Containers for Analysis
Thug Honeyclient: remnux/thug
JSDetox JavaScript Analysis: remnux/jsdetox
Rekall Memory Forensics: remnux/recall
RetDec Decompiler: remnux/retdec
Radare2 Reversing Framework: remnux/radare2
Ciphey Automatic Decrypter: remnux/ciphey
Viper Binary Analysis Framework: remnux/viper
REMnux in a Container: remnux/remnux-distro

Interact with Docker Images
List local images docker images
Update local image docker pull image
Delete local image. docker rmi imageid
Delete unused resources docker system prune
Open a shell inside a docker run --rm -it image bash
transient container
Map a local TCP port 80 to . . . docker run --rm -it -p 80:80
container’s port 80 image bash

Map your current directory . . . docker run --rm -it -v .:dir
into container image bash

Authored by Lenny Zeltser for REMnux v7. Lenny writes a security blog at zeltser.com and is active on Twitter at @lennyzeltser. Many REMnux tools and
techniques are discussed in the Reverse-Engineering Malware course at SANS Institute, which Lenny co-authored. This cheat sheet is distributed according to
the Creative Commons v3 “Attribution” License.

Cheat Sheet for Analyzing Malicious Software
Cheat sheet for reversing malicious Windows executables via static and dynamic code analysis.

Overview of the Code Analysis Process

1. Examine static properties of the Windows executable for initial
assessment and triage.

2. Identify strings and API calls that highlight the program’s
suspicious or malicious capabilities.

3. Perform automated and manual behavioral analysis to gather
additional details.

4. Emulate code execution to identify characteristics and areas for
further analysis.

5. Use a disassembler and decompiler to statically examine code
related to risky strings and APIs.

6. Use a debugger for dynamic analysis to examine how risky strings
and API calls are used.

7. If appropriate, unpack the code and its artifacts.
8. As your understanding of the code increases, add comments,

labels; rename functions, variables.
9. Progress to examine the code that references or depends upon the

code you’ve already analyzed.
10. Repeat steps 5–9 above as necessary (the order may vary) until

analysis objectives are met.

Common 32-Bit Registers and Uses

EAX Addition, multiplication, function results
ECX Counter; used by LOOP and others
EBP Baseline/frame pointer for referencing function arguments

(EBP+value) and local variables (EBP-value)
ESP Points to the current “top” of the stack; changes via PUSH,

POP, and others
EIP Instruction pointer; points to the next instruction; shellcode

gets it via call/pop
EFLAGS Contains fl ags that store outcomes of computations (e.g., Zero

and Carry fl ags)
FS F segment register; FS[0] points to SEH chain, FS[0x30] points

to the PEB.

Common x86 Assembly Instructions

mov EAX,0xB8 Put the value 0xB8 in EAX.
push EAX Put EAX contents on the stack.
pop EAX Remove contents from top of the stack and put them

in EAX .
lea EAX, Put the address of variable EBP-4 in EAX.
[EBP-4]

call EAX Call the function whose address resides in the EAX
register.

add esp,8 Increase ESP by 8 to shrink the stack by two 4-byte
arguments.

sub esp,0x54 Shift ESP by 0x54 to make room on the stack for local
variable(s).

xor EAX,EAX Set EAX contents to zero.
test EAX,EAX Check whether EAX contains zero, set the appropriate

EFLAGS bits.
cmp EAX,0xB8 Compare EAX to 0xB8, set the appropriate EFLAGS bits.

Understanding 64-Bit Registers

EAX→RAX, ECX→RCX, EBX→RBX, ESP→RSP, EIP→RIP
Additional 64-bit registers are R8-R15.
RSP is often used to access stack arguments and local variables,
instead of EBP.
|| R8 (64 bits)
________________________________|||||||||||||||||||||||||||||||| R8D (32 bits)
__|||||||||||||||| R8W (16 bits)
__|||||||| R8B (8 bits)

Passing Parameters to Functions

arg0 [EBP+8] on 32-bit, RCX on 64-bit
arg1 [EBP+0xC] on 32-bit, RDX on 64-bit
arg2 [EBP+0x10] on 32-bit, R8 on 64-bit
arg3 [EBP+0x14] on 32-bit, R9 on 64-bit

Decoding Conditional Jumps

JA / JG Jump if above/jump if greater.
JB / JL Jump if below/jump if less.
JE / JZ Jump if equal; same as jump if zero.
JNE / JNZ Jump if not equal; same as jump if not zero.
JGE / JNL Jump if greater or equal; same as jump if not less.

Some Risky Windows API Calls

Code injection: CreateRemoteThread, OpenProcess, VirtualAllocEx,
WriteProcessMemory, EnumProcesses
Dynamic DLL loading: LoadLibrary, GetProcAddress
Memory scraping: CreateToolhelp32Snapshot, OpenProcess,
ReadProcessMemory, EnumProcesses
Data stealing: GetClipboardData, GetWindowText
Keylogging: GetAsyncKeyState, SetWindowsHookEx
Embedded resources: FindResource, LockResource
Unpacking/self-injection: VirtualAlloc, VirtualProtect
Query artifacts: CreateMutex, CreateFile, FindWindow,
GetModuleHandle, RegOpenKeyEx
Execute a program: WinExec, ShellExecute, CreateProcess
Web interactions: InternetOpen, HttpOpenRequest, HttpSendRequest,
InternetReadFile

Additional Code Analysis Tips

Be patient but persistent; focus on small, manageable code areas and
expand from there.
Use dynamic code analysis (debugging) for code that’s too diffi cult to
understand statically.
Look at jumps and calls to assess how the specimen fl ows from
“interesting” code block to the other.
If code analysis is taking too long, consider whether behavioral or
memory analysis will achieve the goals.
When looking for API calls, know the offi cial API names and the
associated native APIs (Nt, Zw, Rtl).

Authored by Lenny Zeltser (zeltser.com) with feedback from Anuj Soni. Malicious code analysis and related topics are covered in the SANS Institute course
FOR610: Reverse-Engineering Malware, which they’ve co-authored. This cheat sheet, version 1.1 , is released under the Creative Commons v3 “Attribution” License. For
additional reversing, security and IT tips, visit zeltser.com/cheat-sheets.

Cheat Sheet for Analyzing Malicious Documents
This cheat sheet outlines tips and tools for analyzing malicious documents,
such as Microsoft Offi ce, RTF, and PDF fi les.

General Approach to Document Analysis

 1. Examine the document for anomalies, such as risky tags, scripts,
and embedded artifacts.

2. Locate embedded code, such as shellcode, macros, JavaScript, or
other suspicious objects.

3. Extract suspicious code or objects from the fi le.
4. If relevant, deobfuscate and examine macros, JavaScript, or other

embedded code.
5. If relevant, emulate, disassemble and/or debug shellcode that you

extracted from the document.
6. Understand the next steps in the infection chain.

Microsoft Offi ce Format Notes

Binary Microsoft Offi ce document fi les (.doc, .xls, etc.) use the OLE2
(a.k.a. Structured Storage) format.
SRP streams in OLE2 documents sometimes store a cached version of
earlier VBA macro code.
OOXML document fi les (.docx, .xlsm, etc.) supported by Microsoft Offi ce
are compressed zip archives.
VBA macros in OOXML documents are stored inside an OLE2 binary fi le,
which is within the zip archive.
Excel supports XLM macros that are embedded as formulas in sheets
without the OLE2 binary fi le.
RTF documents don’t support macros but can contain malicious
embedded fi les and objects.

Useful MS Offi ce File Analysis Commands

zipdump.py fi le.pptx Examine contents of OOXML fi le fi le.pptx.
zipdump.py Extract fi le with index 3 from fi le.pptx
fi le.pptx -s 3 -d to STDOUT.
olevba.py fi le.xlsm Locate and extract macros from fi le.xlsm.
oledump.py Extract VBA source code from stream 3
fi le.xls -s 3 -v in fi le.xls.
xmldump.py pretty Format XML fi le supplied via STDIN for easier

analysis.
oledump.py fi le.xls -p Find obfuscated URLs in fi le.xls macros.
plugin_http_heuristics
vmonkey Emulate the execution of macros in fi le.doc
fi le.doc to analyze them.
evilclippy -uu Remove the password prompt from macros
fi le.ppt in fi le.ppt.
msoffcrypto-tool Decrypt outfi le.docm using specifi ed
infi le.docm password to create outfi le.docm.
outfi le.docm -p

pcodedmp Disassemble VBA-stomped p-code macro
fi le.doc from fi le.doc.
pcode2code Decompile VBA-stomped p-code macro
fi le.doc from fi le.doc.
rtfobj.py fi le.rtf Extract objects embedded into RTF fi le.rtf.
rtfdump.py fi le.rtf List groups and structure of RTF fi le fi le.rtf.
rtfdump.py fi le.rtf -O Examine objects in RTF fi le fi le.rtf.
rtfdump.py fi le.rtf Extract hex contents from group in RTF
fi le.doc fi le fi le.rtf.
xlmdeobfuscator Deobfuscate XLM (Excel 4) macros in fi le.xlsm.
--fi le fi le.xlsm

Risky PDF Keywords

/OpenAction and /AA specify the script or action to run automatically.
/JavaScript, /JS, /AcroForm, and /XFA can specify JavaScript to run.
/URI accesses a URL, perhaps for phishing.
/SubmitForm and /GoToR can send data to URL.
/ObjStm can hide objects inside an object stream.
/XObject can embed an image for phishing.
Be mindful of obfuscation with hex codes, such as /JavaScript vs.
/J#61vaScript. (See examples)

Useful PDF File Analysis Commands

pdfi d.py Display risky keywords present in fi le fi le.pdf.
fi le.pdf -n
pdf-parser.py Show stats about keywords. Add “-O” to
fi le.pdf -a include object streams.
pdf-parser.py Display contents of object id. Add “-d”
fi le.pdf -o id to dump object’s stream.
pdf-parser.py Display objects that reference object id.
fi le.pdf -r id

qpdf --password=pass Decrypt infi le.pdf using password pass
--decrypt infi le.pdf to create outfi le.pdf.
outfi le.pdf

Shellcode and Other Analysis Commands

xorsearch -W Locate shellcode patterns inside the binary
-d 3 fi le.bin fi le fi le.bin.
scdbg /f Emulate execution of shellcode
fi le.bin in fi le.bin. Use “/off” to specify offset.
runsc32 -f Execute shellcode in fi le fi le.bin to observe
fi le.bin -n behavior in an isolated lab.
base64dump.py List Base64-encoded strings present in fi le
fi le.txt fi le.txt.
numbers-to-string.py Convert numbers that represent characters
fi le in fi le to a string.

Additional Document Analysis Tools

SpiderMonkey, cscript, and box-js help deobfuscate JavaScript that you
extract from document fi les.
Use the debugger built into Microsoft Offi ce to deobfuscate macros in
an isolated lab.
Use AMSIScriptContentRetrieval.ps1 to observe Microsoft Offi ce execute
macros in an isolated lab.
Some automated analysis sandboxes can analyze aspects of malicious
document fi les.
REMnux distro includes many of the free document analysis tools
mentioned above.

Authored by Lenny Zeltser (zeltser.com) with feedback from Pedro Bueno and
Didier Stevens. Malicious document analysis and related topics are covered in
the SANS Institute course FOR610: Reverse-Engineering Malware, which they’ve
co-authored. Creative Commons v3 “Attribution” License for this cheat sheet
version 4.1. More at zeltser.com/cheat-sheets.

INCIDENT RESPONSE & THREAT HUNTINGOPERATING SYSTEM & DEVICE IN-DEPTH

FOR500
Windows Forensic

Analysis
GCFE

FOR518
Mac and iOS Forensic
Analysis & Incident

Response
GIME

FOR585
Smartphone Forensic

Analysis In-Depth
GASF

FOR308
Digital Forensics

Essentials

FOR498
Battlefield Forensics
& Data Acquisition

GBFA

FOR508
Advanced Incident
Response, Threat
Hunting & Digital

Forensics
GCFA

FOR572
Advanced Network
Forensics: Threat

Hunting, Analysis &
Incident Response

GNFA

FOR578
Cyber Threat
Intelligence

GCTI

FOR509
Enterprise Cloud

Forensics & Incident
Response

GCFR

FOR528
Ransomware
for Incident
Responders

FOR610
REM: Malware

Analysis Tools &
Techniques

GREM

SEC504
Hacker Tools,
Techniques &

Incident Handling
GCIH

FOR608
Enterprise-Class

Incident Response
& Threat Hunting

FOR710
Reverse-Engineering
Malware: Advanced

Code Analysis

S A N S D F I R C U R R I C U L U M

https://www.sans.org/cyber-security-courses/windows-forensic-analysis/
https://www.sans.org/cyber-security-courses/mac-and-ios-forensic-analysis-and-incident-response/
https://www.sans.org/cyber-security-courses/advanced-smartphone-mobile-device-forensics/
https://www.sans.org/cyber-security-courses/digital-forensics-essentials/
https://www.sans.org/cyber-security-courses/battlefield-forensics-and-data-acquisition/
https://www.sans.org/cyber-security-courses/advanced-incident-response-threat-hunting-training/
https://www.sans.org/cyber-security-courses/advanced-network-forensics-threat-hunting-incident-response/
https://www.sans.org/cyber-security-courses/cyber-threat-intelligence/
https://www.sans.org/cyber-security-courses/enterprise-cloud-forensics-incident-response/
https://www.sans.org/cyber-security-courses/ransomware-incident-responders/
https://www.sans.org/cyber-security-courses/reverse-engineering-malware-malware-analysis-tools-techniques/
https://www.sans.org/cyber-security-courses/hacker-techniques-incident-handling/
https://www.sans.org/cyber-security-courses/enterprise-incident-response-threat-hunting/
https://www.sans.org/cyber-security-courses/reverse-engineering-malware-advanced-code-analysis/

